软硬兼施,数字人民币渐行渐近!
NVIDIA 公司健康业务副总裁兼总经理Kimberly Powell表示,临床社区将增加对联合学习方法的使用,以跨各种机构、地区、患者人口统计数据和医疗扫描仪建立人工智能模型。即使有大量数据需要训练,这些模型的敏感性和选择性也优于单个机构建立的人工智能模型。另外,研究人员无需共享机密的患者信息即可在人工智能模型创建上进行协作。联合学习还有助于为数据稀缺的区域(例如儿科和罕见疾病)建立人工智能模型。 NVIDIA公司DGX Systems业务副总裁兼总经理Charlie Boyle表示,过去十年来,很多组织争相招募数据科学家,但由于缺乏支持性基础设施,其生产力一直低于预期。更多的组织将通过以超级计算规模构建集中的共享基础设施来加快人工智能的投资回报。这将促进数据科学人才的培养和扩展,最佳实践的共享,并加速解决复杂的人工智能问题。 Planful公司首席技术官Sanjay Vyas表示,人工智能将会缩小无缝用户体验的范围:当人们回顾人工智能的历史时,算法是最重要的,用户体验位居其次。但是随着进入2021年,支持人工智能的应用将越来越关注可用性。人工智能的最佳表达对用户而言是无缝的,并且在后台毫不干扰地工作。人工智能/机器学习支持的平台将找到新方法来引导用户获得更好的结论和解决方案。这是通过查询大量数据,查找异常情况,洞察力和趋势,然后在适当的业务环境中呈现结果来实现的。真正无摩擦的人工智能/机器学习应该是所有业务平台的最终目标。希望看到更复杂的人工智能应用程序,这些应用程序可以识别每个用户正在尝试完成的任务,并自动提供可用于快速行动的见解。这种易用性对于广大技术用户和非技术用户都将具有不可思议的价值。 Talend公司首席技术官Calishna Tammana表示,道德的人工智能将在2021年的产品开发中扮演关键角色,道德的人工智能正在成为一个重要的问题,但很难解决。组织正在使用数据和人工智能来创建解决方案,但是它们可能会在歧视、监视、透明性、隐私、安全性、表达自由、工作权和获得公共服务方面绕过人权监管法规。为了避免声誉、法规和法律风险,必须遵守道德规范的人工智能,并将最终让位于人工智能政策。人工智能政策将确保为人们提供高标准的透明度和保护措施。在数据领域,组织的首席执行官和首席技术官将需要找到方法,通过仔细的分析,审查和编程来消除算法中的偏见。 Nuance通信公司首席技术官Joe Petro表示,人们将看到企业专注于采用和开发可真正带来投资回报率(ROI)的人工智能解决方案。组织将专注于可证明的进步和可衡量的结果,因此将投资于解决特定问题的解决方案。对客户想要解决的复杂性和挑战有深刻理解的公司,并愿意在解决方案上投入研发资金,而这些组织将获得成功。 毕马威公司数据与分析负责人Traci Gusher 表示,人工智能技能差距将继续存在,组织将考虑新的适应方法。并且很难聘请部署人工智能和获得所有收益所需的人才,一半的行业内部人士都表示面临了这一挑战。而且,许多组织已经在数月或数年的时间内加快了数字化转型计划的实施,但是在支持这些计划的可用人才和培训机会方面存在差异。由于需求增加,预计组织将为员工提供更多的技能提升计划和激励措施,以使其学习新技能以及在组织的各个层面上建立数据和人工智能素养。疫情为组织提供了一个机会,使他们可以优先考虑这些行动,并帮助员工在快速过渡到远程工作中发展新技能。 Jumio公司首席执行官Robert Prigge表示,解决人工智能算法中的偏见将是当务之急,这将导致推出针对种族的机器学习支持的面部识别准则。组织越来越关注人工智能算法中的人口统计学偏差(种族、年龄、性别)及其对其品牌的影响以及引发法律问题的可能性。在2021年选择身份证明解决方案时,评估供应商如何应对人口统计学偏差将成为重中之重。 对于希望了解供应商的人工智能“黑盒”是如何构建的,数据源自何处以及培训数据对所服务的广泛人群的代表性如何的组织,组织将越来越需要明确的答案。随着组织继续采用基于生物特征的面部识别技术进行身份验证,行业必须解决系统中固有的偏差。人工智能、数据和种族这一话题并不是什么新鲜事物,但它会在2021年达到顶峰。据麻省理工学院的研究人员分析了用于开发面部识别技术的图像数据集之后,有77%的图像是男性,而83%的图像是白人,这表明了面部识别技术中存在系统偏差的主要原因之一。在2021年,将采用指南来抵消这种系统性偏见。在此之前,使用面部识别技术的组织应该询问其技术提供商如何训练其算法,并确保其供应商未针对购买的数据集训练算法。 罗格斯大学基础设施研究员Tobias Komischke博士表示,将逐步将人工智能逐步引入人们生活的更多领域。在2021年,由于疫情产生的数据与模型训练所用的数据明显不同,因此对许多机器学习模型进行了巨大的压力测试。在2021年,将会看到人工智能在工作和生活的更多领域中更加逐步和不断地引入,这些领域可以证明有形的价值。 Workday公司首席技术官Jim Stratton表示,可解释的人工智能/机器学习正在兴起,期望开发人员和商业用户对人工智能和机器学习算法以及如何应用它们有更多的了解和推理。在人们建立对基础技术的信任之后,这些解决方案将被广泛采用,只有在将给定预测的驱动因素解释给最终用户的情况下,这种情况才会发生。例如,在招聘时使用机器学习的背景下,为什么要推荐给定候选人担任特定职位,这既可以使招聘经理做出明智的决定,又可以揭露招聘中无意(或恶意)偏见的风险做法。 Laserfiche公司首席信息官Thomas Phelps表示,人工智能将集成到组织日常运营的每个步骤中,在2021年,人们最终将看到人工智能(AI)嵌入组织运行方式的所有方面,它将成为组织创造竞争优势的方式,提供新产品和服务,改造后台并改善客户体验。这将包括使用人工智能来帮助减轻风险和优化成本,例如预测供应链中的问题并建议替代供应商。安全技术将越来越多地使用人工智能,人工智能也将更常用于防止威胁参与者的活动和攻击,包括打击勒索软件或泄露敏感数据。监控系统中的人工智能面部识别技术与钥匙卡系统、感应设备和建筑图结合使用,将用于快速识别建筑物中的入侵者。
DrFirst公司产品创新和互操作性高级副总裁Kunal Agarwal表示,2020年发生的冠状病毒疫情以前所未有的速度加快了医疗保健的数字化转型。尽管远程医疗将在2021年继续占据主导地位,但人们需要改进人工智能(AI)和分析以及实用的互操作性,以释放其全部潜力。例如,具有深度学习的人工智能甚至可以从患者在远程医疗会议期间从手机发送的图像中准确地分析和检测潜在问题。 (编辑:鹰潭站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |