加入收藏 | 设为首页 | 会员中心 | 我要投稿 鹰潭站长网 (https://www.0701zz.cn/)- 图像处理、低代码、云通信、数据工具、物联设备!
当前位置: 首页 > 站长资讯 > 外闻 > 正文

神经网络与人类思维间

发布时间:2020-11-06 13:09:46 所属栏目:外闻 来源:互联网
导读:以学习阅读为例。眼睛是这里最重要的感官。孩子们学会阅读要先学习字母,反复看字母,尝试发音并写出来。每次读、说、写都在训练头脑,提高准确性,直到写出完整的字母表。 在神经网络受到相对简单的训练后,孩子会把单词串在一起,现在听觉起主要的作用。当

以学习阅读为例。眼睛是这里最重要的感官。孩子们学会阅读要先学习字母,反复看字母,尝试发音并写出来。每次读、说、写都在训练头脑,提高准确性,直到写出完整的字母表。

在神经网络受到相对简单的训练后,孩子会把单词串在一起,现在听觉起主要的作用。当他提到这些作品时,就在这些单词中开启识别模式,26个字母如何不同组合成大量的单词,形成英语。

这种模式识别非常重要,可帮助孩子识别人脸、动物或玩具。成年人的模式识别变得非常强大,他们接受了大量训练,处理海量数据帮助他们识别周围的模式。根据经验预测是否会下雨,根据记忆和经验预测事件结果都是模式识别。福尔摩斯发现商队里的莫里亚蒂教授,是因为他的袖子上有粉笔灰尘,这也是模式识别。神经网络有一个输入层,数据通过它理解和处理的模型形式进入网中。然后数据传递到隐藏层进行训练,权重发生变化,最后输出层给出了一个预测,无论区分出它是猫还是狗,还是根据学过的单词完成一个句子。

由于我们把人类思维比作一个巨大的神经网络,只有当这个网络也有一个输入层时,它才是清楚的。视觉、听觉、触觉、味觉和嗅觉五种感官构成了输入层到大脑中。

视觉是所有五种感觉中最重要的,因为最大的数据变化就来自于这种感觉。训练神经网络最好的数据集合要包含不同类型的数据和示例,而不止是一种数据。只有一种数据会导致模型过度拟合,这意味着当数据源于经受训练过的同类,可能会给出正确的结果,但是当数据偏离训练数据规范时,精确度便受到威胁有训练神经网络经验的人认为,训练一个简单的网络相对容易,但随着增加更多神经层,让数据和终端输出更加复杂,学习速度就会减慢。童年是学习一项新技能的最佳时机,因为与成年人相比,他们的神经网络更简单,大脑没有受过训练,因此更容易将神经元弯曲到你的意愿上。

当孩子长大后,随着任务变得复杂,学习也变得困难。例如,解决棘手的问题、做出决策和判断就是复杂任务,即便我们成年人也没有停止学习和发展。大脑一直在学习,那么这种学习到底是如何发生的呢?

答案是——大脑重塑自己。就像神经网络中神经元之间的权重和连接发生变化一样,大脑也改变了数十亿神经元的连接,为了让复杂的神经网络不仅保留之前接受的训练,还能在此基础上再接再厉,提升最终过程的复杂性。

正如你在阅读这篇文章的时候,你大脑中的每个神经元都在改变自己,改变它与数十亿其他神经元的联系,在你自出生以来获得的经验的基础上增加经验。这就是学习的方式。每次你在学习,大脑都会重塑自己,这个过程就像训练神经网络一样。当你开始在谷歌上输入时,浏览器怎么就已经猜到你在找什么呢?移动相机又如何在我们称为照片的微小像素海洋中识别人脸呢?像Alexa、Siri或Google Home这样的虚拟助理如何实现复杂的任务,例如安排会议、获取天气信息、阅读睡前故事等呢?

所有这些问题的答案正是机器学习,更具体地说,是神经网络。

(编辑:鹰潭站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读