AI和ML在安全中的作用
机器学习和短信诈骗 随着越来越多的员工开始在家工作,并且可能更频繁地使用个人设备来完成任务并与同事合作,警惕短信中可能存在的欺诈行为是很重要的。 “由于恶意行为者的攻击载体的多样化,包括使用Covid-19来作为短信钓鱼诈骗的诱饵,组织正面临着加强防御的巨大压力,”MobileIron负责产品管理的高级副总裁Brian Foster表示。 “为了保护设备和数据免受这些高级攻击,机器学习在移动威胁防御(MTD)和其他形式的托管威胁检测方面的使用将继续发展成为一种高效的安全方法。” “可以对机器学习模型进行培训,以立即识别和防范潜在的有害活动,包括其他解决方案无法及时检测到的未知威胁和零日威胁。同样重要的是,当通过统一端点管理(UEM)平台部署基于机器学习的MTD时,它还可以增强UEM所提供的基础安全性,以支持分层的企业移动安全策略。 “机器学习是一项强大而又不引人注目的技术,它可以随着时间的推移不断监控应用程序和用户行为,从而识别出正常和异常行为之间的区别。”有针对性的攻击通常会在设备上产生一个非常微妙的变化,而人类的分析人员是看不到这些变化的。有时,只有通过机器学习将数千个设备参数关联起来,才能对其进行检测。”“通过遵循最佳实践建议并及时更新补丁和其他更新,一个组织可以及时的做出反应,抵御威胁,”Brown说。“而且人工智能也可能会给IT和安全专业人士带来一个对抗网络犯罪的优势。” 反病毒(AV)与人工智能驱动的端点保护就是这样的一个例子;AV解决方案通常是基于签名来工作的,因此有必要及时跟上签名定义,以保持对最新威胁的保护。这的确会是一个问题,如果病毒定义落后了,要么是因为更新失败,要么是因为病毒供应商缺乏知识。如果一个新的,以前没有出现过的勒索软件被用来攻击一家企业,签名保护将无法捕捉到它。 人工智能驱动的端点保护采取了不同的策略,通过反复的培训过程为端点建立了行为基线。如果发生异常情况,人工智能就可以标记它并采取行动--无论是向技术人员发送通知,还是在勒索软件攻击后恢复到安全状态。这也提供了针对威胁的主动预防性保护,而不是等待签名的更新。Netacea数据科学主管Mark Greenwood研究了机器人在网络安全中的好处,并强调了企业必须能够区分好的和坏的。 “如今,机器人占据了互联网流量的绝大部分,”Greenwood解释说。“而且大多数都是危险的。从使用窃取的凭证进行账户收购,到创建虚假账户和欺诈,它们构成了真正的网络安全威胁。 “但是企业无法仅仅依靠人类的反应来对抗自动化的威胁。如果他们真的想解决“机器人问题”,他们就必须使用人工智能和机器学习。为什么?因为要真正区分好的机器人(比如搜索引擎抓取器)、坏的机器人和人类,企业就必须利用人工智能和机器学习来全面了解自己的网站流量。 “摄取和分析大量数据是必要的,而人工智能能够使这成为可能,而采用机器学习方法将使网络安全团队能够调整他们的技术,以适应不断变化的环境。” “通过观察用户的行为模式,企业将得到以下问题的答案:‘普通用户的旅程是什么样的’和‘不寻常的冒险旅程是什么样的’。从这里,我们可以了解他们网站流量的意图,让他们领先于那些坏的机器人。”网络安全就像是一盘国际象棋,”Palo Alto网络公司的EMEA首席安全官Greg Day表示。“对手试图击败受害者,而受害者则旨在阻止对手的攻击。数据是王者,也是最终的奖品。” “1996年,人工智能国际象棋系统“深蓝”在第一场比赛中击败了世界冠军Garry Kasparov。很明显,人工智能可以通过编程的方式在规范之外进行更广泛、更快和更远的思考,而现在它在网络安全领域的许多应用也是如此。” (编辑:鹰潭站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |