最牛十大处理器
AMDRyzen™嵌入式V1000处理器通过集成的图形功能在性能和功能之间实现了理想的平衡,从而使IoT网关在强大的安全平台中具有学习和决策能力。
AMDRyzen嵌入式V1000SoC可提供离散GPU口径的图形和多媒体处理功能,并通过低至12W和高至54W的散热设计功率(TDP)达到高达3.61TFLOPS的性能,使系统设计人员能够将处理效率提高到一个新的水平。设计的多功能性。还提供一个工业温度处理器选件,它可以在低至-40°C的温度下运行。它在单个SoC中提供了高性能CPU,GPU和广泛的I/O的集成,功率范围从12W扩展到54W,并在较小的外形中实现高性能-更小的板、更低的功耗和更低的总拥有成本(TCO)。 Kneron的首款产品是KL520神经网络处理器,它专门用于智能家居,安全系统和移动设备等应用中的图像处理和面部识别。它经过优化,可以运行卷积神经网络(CNN),这是当今图像处理中常用的类型。 去年秋天,该公司的KL520AI片上系统将双ArmCortexM4CPU与该公司的神经处理单元相结合,可在智能锁,安全摄像机和智能家用电器等低功耗设备中提供高性能的推断。得益于Kneron的可重构人工神经网络技术,该芯片可以适应于实时处理和分析音频,2D图像和3D图像,同时还支持TensorFlow和PyTorch等AI框架以及ResNet和MobileNet等神经网络。该芯片可用于华硕拥有的研扬科技制造的EdgeAI模块。 KL520可以运行0.3TOPS并消耗0.5W(相当于0.6TOPS/W),考虑到该芯片的MAC效率很高(超过90%),该公司表示这足以实现精确的面部识别。 RZ/A2M结合了专有的加速器和528MHzArmCortex-A9和4MBSRAM来处理图像数据,以进行机器视觉作业。 Renesas设计了一种由多个内核组成的动态可重配置处理器(DRP),可以利用成像算法中的并行性。它希望DRP(与GPU类似)可以处理各种各样的工作,最初围绕推理任务。未来的产品将瞄准边缘的神经网络培训。 与所有并行处理器一样,编程可能是个大问题。Renesas表示,其DRP可以使用其提供的编译器和工具在C语言中进行编程。 NVIDIA去年秋天透露,jetsonxaviernx系统芯片是“世界上最小的超级计算机”,可在10瓦功率范围内为各种物联网形式提供“服务器级性能”。该芯片是NvidiaJetson计算板产品系列中最小的尺寸,尺寸约为信用卡大小,并带有384个CUDA内核和48个张量内核,每秒可进行多达21兆兆位运算。
得益于Nvidia的工程设计,JetsonXavierNX以相同的功耗在更小的尺寸下提供了比JetsonTX2最高15倍的性能。JetsonXavierNX还配备了Nvidia的深度学习加速器,多达六核的CarmelArmCPU,多达六个CSI摄像机,用于MIPICSI-2摄像机串行接口的12个通道,8GB的128位LPDDR4x内存,千兆位以太网和基于Ubuntu的Linux。 (编辑:鹰潭站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |