加入收藏 | 设为首页 | 会员中心 | 我要投稿 鹰潭站长网 (https://www.0701zz.cn/)- 图像处理、低代码、云通信、数据工具、物联设备!
当前位置: 首页 > 站长资讯 > 传媒 > 正文

输入映射和输出映射

发布时间:2021-02-05 14:32:02 所属栏目:传媒 来源:互联网
导读:AI 专家路线图概览 这部分内容简要总结了 AI 专家路线图,并从以下几个方面着手讲解:数据科学家、机器学习、深度学习、数据工程师以及大数据工程师。这 5 部分内容都有详细的学习路线图,点击图表任意模块,都会链接到对应的内容。 数据科学家路线图 在数据

AI 专家路线图概览

这部分内容简要总结了 AI 专家路线图,并从以下几个方面着手讲解: 数据科学家、机器学习、深度学习、数据工程师以及大数据工程师 。这 5 部分内容都有详细的学习路线图,点击图表任意模块,都会链接到对应的内容。

数据科学家路线图

在数据科学家路线图中,我们可以了解到进行 AI 研究所需要的基础:矩阵和线性代数、数据库、表格数据、数据格式(JSON、XML、CSV)、正则表达式等等。

在统计学方面,该路线图涵盖了概率论、概率分布、估计、假设检验、置信区间、大数定律、蒙特卡罗方法等等。

在 Python 编程方面,该路线图展示了 Python 基础、比较重要的 Python 库以及所需运行环境等。

在数据来源方面,学习者点击「Awesome Public Datasets」图标,就可以链接到整理好的公共数据集等。接着过渡到可视化和探索性数据分析 / 转换 / 整理相关内容,最后进入到机器学习和数据工程师两个不同的方向
 

亮点多多的 AI 专家路线图

对学习者非常友好的是,这份 AI 专家路线图是一个互动版本。 每个子模块所列内容都可以链接到指定网站,学习者可以找到词条的维基百科或其他来源的释义和拓展内容。 此外,如果有新的研究出现时,该路线图会随时更新。

该路线图旨在给学习者提供关于人工智能的整体概念,并在学习感到困惑时给予指导,而没有鼓励学习者一味地选择最先进、最热门的技术。这是因为在科研中,每个人都需要了解哪种工具最适合自己。换言之,最先进、最热门的技术不一定是最适合的。

就这份 AI 专家路线图而言,开发者列出了任何学习路径所必不可少的一些要素,如论文和代码、版本控制、语义化版本控制和更新日志。但就具体选择上,开发者认为在学习 AI 时不应直接过渡到当前热门的技术——深度学习,而应步步为营,并提供了 3 条可供选择的学习路径:数据科学家→机器学习→深度学习…;数据科学家→数据工程师…;大数据工程师→…
 

右倾转左倾是一个很基本的操作,我们以35,44为例,你既可以将35作为黑节点,44作为右倾红色儿子;也可以将44作为黑节点,35作为左倾红儿子。事实上我们对于右倾的修复就是换了一种树形而已。一路回溯到当前根节点,直至路径中不再包含任何的红色右倾节点,至此修复工作全部完成。

总结

这篇文章的目的旨在从概念模型2-3树出发介绍一颗红黑树的前世今生。希望大家能够跳出枯燥的五条定义,更加本质地认识红黑树中的各种操作来源。

虽然本文只是介绍了相对简单的左倾红黑树,但是如果能够将左倾红黑树认识的很清楚,那么普通红黑树也只是多了一些情况而已。

对于还有精力阅读算法导论的读者,我给出一点自己的经验:

插入阶段与左倾红黑树比较相似

配图中的部分节点标识不太清楚,要反复对照原文阅读

删除阶段,算法导论中将删除黑节点X带来的黑色平衡破坏解释为,给X的子节点添上额外的一层黑色,让X的子节点变为【双重黑】或者【既黑又红】的。

我其实不太接受这种解释,经过考虑,我认为其实这个表达可以更直接一点:既然删除了某个黑色节点,那么必然会破坏以这个黑色节点为路径上的黑色平衡,表现为路径中缺少一个黑。

如果你仔细研究算法导论中的四个删除场景,会发现它们在做的事情其实都是从兄弟节点的路径想办法移动一个黑色节点过来。

因此,如果实在无法理解【双重黑】,【既黑又红】,那么直接按照“某条路径欠黑,所以要想办法补充一个黑色节点”这个思路来思考吧!

还是删除阶段,四个删除场景该如何记忆?我们假设删除的是某个左倾节点,其实决定场景变化的就是三个因素:这个节点的兄弟颜色;兄弟的左右儿子的颜色;这个节点的父节点的颜色。这样子粗略估计有2x2x2x2共16种情况。实际上会少很多,我们从兄弟的颜色入手。请注意如果兄弟是红色,那么当前节点的父亲和兄弟的儿子其实都是黑色。而当兄弟是黑色的时候,我们只需要满足兄弟的右儿子是红色,就能通过一次调整来实现平衡(具体请参照算法导论)。

另外提醒注意的是,一定要想好记忆的顺序。算法导论中的删除调平4种情况中,只有情况4是绝对终态,也就是说到达了这种状态后只需要一次调整绝对能达到平衡。所以我们的出发点一定是从这种状态开始,对于另外几种情况,我们要想的不是怎么去达到最终平衡,而是怎么能让它一步一步转为情况4。这样子你的思路就会清晰很多,记忆的压力也会减小。如果细心的话,你可以回想一下本文是按照怎样的顺序介绍左倾红黑树的插入的,为什么是这样的顺序?

一个数据结构可视化网站,它的红黑树是基于2-3-4树的,跟算法导论中基本一样(除了删除时候对前驱/后继节点的选择),可以用它当做检验

(编辑:鹰潭站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读